## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *rac*-4-(2-Methoxyphenyl)-2,6-dimethyl-cyclohex-3-enecarboxylic acid

# Songwen Xie,<sup>a</sup>\* Brian P. Fowler,<sup>a</sup> Sara M. Deyo<sup>a</sup> and Maren Pink<sup>b</sup>

<sup>a</sup>Department of Natural, Information, and Mathematical Sciences, Indiana University Kokomo, Kokomo, IN 46904–9003, USA, and <sup>b</sup>Indiana University Molecular Structure Center, Indiana University, Bloomington, IN 47405–7102, USA Correspondence e-mail: soxie@iuk.edu

Received 17 May 2010; accepted 25 May 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.138; data-to-parameter ratio = 16.6.

The title compound,  $C_{16}H_{20}O_3$ , was synthesized to study the hydrogen-bonding interactions of the two enantiomers in the solid state. Intermolecular  $O-H\cdots O$  hydrogen bonds produce centrosymmetric  $R_2^2(8)$  rings which dimerize the two chiral enantiomers together through their carboxyl groups.

#### **Related literature**

In similar compounds previously reported (Xie *et al.*, 2002, 2007*a*, 2008*a*,*b*), the racemates also consist of carboxylic acid *RS* dimers. For the structure of the precursor, see: Xie *et al.* (2007*b*). The chirality of the title compound is solely generated by the presence of the double bond in the cyclohexene ring, see: Xie *et al.* (2004). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).



#### **Experimental**

Crystal data

 $C_{16}H_{20}O_3$   $M_r = 260.32$ Monoclinic,  $P2_1/c$ a = 14.2283 (9) Å

| b = 7.1202 | (5) Å |
|------------|-------|

| D = 7.1202(3) A                 |  |
|---------------------------------|--|
| c = 14.9517 (10)  Å             |  |
| $\beta = 106.069 \ (2)^{\circ}$ |  |

#### $V = 1455.55 (17) \text{ Å}^3$

| Z = 4                        |
|------------------------------|
| Mo $K\alpha$ radiation       |
| $\mu = 0.08 \text{ mm}^{-1}$ |

#### Data collection

| Bruker APEXII Kappa Duo                | 11165 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2964 independent reflections           |
| Absorption correction: multi-scan      | 2296 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)              | $R_{\rm int} = 0.022$                  |
| $T_{\min} = 0.980, \ T_{\max} = 0.994$ |                                        |
|                                        |                                        |
| Refinement                             |                                        |

T = 150 K

 $0.25 \times 0.23 \times 0.07 \text{ mm}$ 

H atoms treated by a mixture of

refinement

 $\Delta \rho_{\rm max} = 0.56 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ 

independent and constrained

 $R[F^2 > 2\sigma(F^2)] = 0.048$   $wR(F^2) = 0.138$  S = 1.042964 reflections 179 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - \mathbf{H} \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|-------------------------|--------------------------------------|
| $O2-H2\cdots O1^i$                   | 0.88 (3) | 1.79 (3)                | 2.6640 (18)             | 177 (3)                              |
| G ( 1 ()                             |          |                         |                         |                                      |

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

SX, BF, and SD are grateful for the Grant-in-aid for Faculty Research from Indiana University Kokomo, as well as the Senior Research Grant from Indiana Academy of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2342).

#### References

- Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, S., Hou, Y., Meyers, C. Y. & Robinson, P. D. (2002). Acta Cryst. E58, 01460–01462.
- Xie, S., Kenny, C. & Robinson, P. D. (2007a). Acta Cryst. E63, 03897.
- Xie, S., Kenny, C. & Robinson, P. D. (2007b). Acta Cryst. E63, 01660-01662.
- Xie, S., Meyers, C. Y. & Robinson, P. D. (2004). Acta Cryst. E60, o1362-o1364.
- Xie, S., O'Hearn, C. R. & Robinson, P. D. (2008a). Acta Cryst. E64, 0554.
- Xie, S., Stein, H. J. & Pink, M. (2008b). Acta Cryst. E64, o1869.

supplementary materials

Acta Cryst. (2010). E66, o1516 [doi:10.1107/S1600536810019732]

### rac-4-(2-Methoxyphenyl)-2,6-dimethylcyclohex-3-enecarboxylic acid

#### S. Xie, B. P. Fowler, S. M. Deyo and M. Pink

#### Comment

The title carboxylic acid was prepared to study the interaction of the two enantiomers in the solid state. We have previously reported the structure of its precursor, which is achiral and forms hydrogen-bonded dimers (Xie *et al.*, 2007b). The chirality of the title compound is solely generated by the presence of the double bond in the cyclohexene ring (Xie *et al.*, 2004). The resultant racemate is made up of carboxylic acid RS dimers (Xie *et al.*, 2002, 2007a, 2008a,b). The structure and atom numbering are shown in Fig. 1, which illustrates the half-chair conformation of the cyclohexene ring. The torsion angles involving atoms C4, C5, C6, C1, and C2 are near 0°. The carboxyl group is almost perpendicular to the cyclohexene ring with an angle of 82.2° between the O1—C14—O2—C3 plane and the C1—C6 ring. The double bond between C5—C6 is not fully conjugated with the aromatic ring as shown by the C1—C6—C5 plane to benzene ring angle of 52.6°. Unlike other previously reported *para* substituted analogs and like other previously reported *meta* substituted analogs (Xie *et al.*, 2008b), the molecule also has a chiral axis due to the *ortho* methoxy substituent on the aromatic ring.

Fig. 2 shows the hydrogen bonding scheme. Atom O2 acts as a donor in an intermolecular hydrogen bond to atom O1, producing an R22(8) ring (Bernstein *et al.*, 1995), thus creating a hydrogen- bonded dimer. There is no evidence to suggest that weak directional interactions interconnect the dimers. Hydrogen bond geometry is given in Table 1.

#### Experimental

The title carboxylic acid was synthesized following asimilar method reported by Xie *et al.*, 2002. Purified compound was recrystallized from hexane- dichloromethane as colorless plates (m.p. 417-418 K).

#### Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms not involved in hydrogen bonding were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. H1 was freely refined.

#### Figures



Fig. 1. The molecular structure showing thermal ellipsoids at the 50% probability level and the atom numbering scheme.



Fig. 2. Hydrogen bonded dimer. Dashed lines represent hydrogen bonds (symmetry code: #1 -x+2,-y+3,-z).

#### 4-(2-Methoxyphenyl)-2,6-dimethylcyclohex-3-enecarboxylic acid

F(000) = 560

 $\theta = 2.8 - 26.3^{\circ}$  $\mu = 0.08 \text{ mm}^{-1}$ T = 150 KPlate, colorless  $0.25 \times 0.23 \times 0.07 \text{ mm}$ 

 $D_{\rm x} = 1.188 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4026 reflections

| $C_{16}H_{20}O_3$               |
|---------------------------------|
| $M_r = 260.32$                  |
| Monoclinic, $P2_1/c$            |
| Hall symbol: -P 2ybc            |
| <i>a</i> = 14.2283 (9) Å        |
| <i>b</i> = 7.1202 (5) Å         |
| c = 14.9517 (10)  Å             |
| $\beta = 106.069 \ (2)^{\circ}$ |
| $V = 1455.55 (17) \text{ Å}^3$  |
| Z = 4                           |

#### Data collection

| Bruker APEXII Kappa Duo<br>diffractometer                      | 2964 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2296 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.022$                                                     |
| Detector resolution: 83.33 pixels mm <sup>-1</sup>             | $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ |
| $\omega$ and $\phi$ scans                                      | $h = -16 \rightarrow 17$                                                  |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $k = -7 \rightarrow 8$                                                    |
| $T_{\min} = 0.980, \ T_{\max} = 0.994$                         | $l = -13 \rightarrow 18$                                                  |
| 11165 measured reflections                                     |                                                                           |

#### Refinement

Refinement on  $F^2$ methods Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.048$ sites  $wR(F^2) = 0.138$ constrained refinement S = 1.04where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} = 0.001$ 2964 reflections  $\Delta \rho_{\text{max}} = 0.56 \text{ e} \text{ Å}^{-3}$ 179 parameters  $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Primary atom site location: structure-invariant direct Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring H atoms treated by a mixture of independent and  $w = 1/[\sigma^2(F_0^2) + (0.0653P)^2 + 0.6215P]$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|---------------|--------------|---------------------------|
| 01   | 0.88885 (9)  | 0.4779 (2)    | 0.00968 (10) | 0.0602 (5)                |
| O2   | 1.02302 (9)  | 0.3518 (2)    | 0.10376 (10) | 0.0531 (4)                |
| H2O  | 1.051 (2)    | 0.411 (4)     | 0.0670 (18)  | 0.082 (8)*                |
| 03   | 0.55725 (8)  | -0.14999 (17) | 0.09567 (7)  | 0.0342 (3)                |
| C1   | 0.76051 (16) | -0.0149 (3)   | 0.11315 (14) | 0.0478 (5)                |
| H1A  | 0.7060       | -0.0803       | 0.0683       | 0.057*                    |
| H1B  | 0.8079       | -0.1122       | 0.1446       | 0.057*                    |
| C2   | 0.81042 (14) | 0.1106 (3)    | 0.05858 (12) | 0.0418 (5)                |
| H2   | 0.7585       | 0.1771        | 0.0100       | 0.050*                    |
| C3   | 0.87036 (12) | 0.2591 (3)    | 0.12493 (12) | 0.0366 (4)                |
| H3   | 0.9175       | 0.1927        | 0.1775       | 0.044*                    |
| C4   | 0.80346 (14) | 0.3809 (3)    | 0.16515 (13) | 0.0409 (4)                |
| H4   | 0.7610       | 0.4559        | 0.1129       | 0.049*                    |
| C5   | 0.73751 (16) | 0.2583 (3)    | 0.20376 (14) | 0.0479 (5)                |
| Н5   | 0.7053       | 0.3137        | 0.2450       | 0.057*                    |
| C6   | 0.72161 (11) | 0.0741 (2)    | 0.18303 (11) | 0.0300 (4)                |
| C7   | 0.66838 (11) | -0.0451 (2)   | 0.23497 (10) | 0.0279 (4)                |
| C8   | 0.69907 (12) | -0.0459 (2)   | 0.33172 (11) | 0.0322 (4)                |
| H8   | 0.7515       | 0.0337        | 0.3629       | 0.039*                    |
| С9   | 0.65520 (14) | -0.1596 (2)   | 0.38384 (11) | 0.0377 (4)                |
| Н9   | 0.6772       | -0.1570       | 0.4499       | 0.045*                    |
| C10  | 0.57966 (14) | -0.2762 (3)   | 0.33929 (12) | 0.0392 (4)                |
| H10  | 0.5501       | -0.3557       | 0.3748       | 0.047*                    |
| C11  | 0.54636 (13) | -0.2784 (2)   | 0.24267 (12) | 0.0343 (4)                |
| H11  | 0.4942       | -0.3592       | 0.2122       | 0.041*                    |
| C12  | 0.58967 (11) | -0.1624 (2)   | 0.19099 (11) | 0.0279 (4)                |
| C13  | 0.87078 (18) | -0.0056 (4)   | 0.00957 (17) | 0.0680 (7)                |
| H13A | 0.8984       | 0.0766        | -0.0292      | 0.102*                    |
| H13B | 0.8290       | -0.1004       | -0.0297      | 0.102*                    |
| H13C | 0.9239       | -0.0680       | 0.0560       | 0.102*                    |
| C14  | 0.92794 (13) | 0.3744 (3)    | 0.07423 (12) | 0.0409 (5)                |
| C15  | 0.86046 (19) | 0.5186 (3)    | 0.23835 (16) | 0.0615 (6)                |
| H15A | 0.8146       | 0.5943        | 0.2615       | 0.092*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H15B | 0.8997       | 0.6013      | 0.2105       | 0.092*     |
|------|--------------|-------------|--------------|------------|
| H15C | 0.9037       | 0.4488      | 0.2901       | 0.092*     |
| C16  | 0.47037 (14) | -0.2506 (3) | 0.05064 (12) | 0.0441 (5) |
| H16A | 0.4516       | -0.2223     | -0.0161      | 0.066*     |
| H16B | 0.4175       | -0.2129     | 0.0772       | 0.066*     |
| H16C | 0.4822       | -0.3857     | 0.0599       | 0.066*     |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0321 (7)  | 0.0899 (12) | 0.0542 (8)  | -0.0105 (7)  | 0.0048 (6)  | 0.0408 (8)   |
| O2  | 0.0299 (7)  | 0.0756 (11) | 0.0510 (8)  | -0.0106 (7)  | 0.0066 (6)  | 0.0317 (7)   |
| O3  | 0.0347 (6)  | 0.0422 (7)  | 0.0275 (6)  | -0.0110 (5)  | 0.0115 (5)  | -0.0011 (5)  |
| C1  | 0.0570 (12) | 0.0433 (11) | 0.0542 (11) | -0.0197 (9)  | 0.0341 (10) | -0.0117 (9)  |
| C2  | 0.0365 (9)  | 0.0554 (12) | 0.0387 (9)  | -0.0140 (9)  | 0.0190 (8)  | -0.0047 (8)  |
| C3  | 0.0303 (9)  | 0.0444 (10) | 0.0336 (8)  | -0.0108 (8)  | 0.0066 (7)  | 0.0099 (7)   |
| C4  | 0.0461 (11) | 0.0374 (10) | 0.0397 (9)  | -0.0125 (8)  | 0.0124 (8)  | 0.0025 (8)   |
| C5  | 0.0604 (13) | 0.0390 (11) | 0.0554 (11) | -0.0104 (9)  | 0.0346 (10) | -0.0058 (9)  |
| C6  | 0.0270 (8)  | 0.0360 (9)  | 0.0285 (8)  | -0.0060 (7)  | 0.0100 (6)  | -0.0011 (7)  |
| C7  | 0.0277 (8)  | 0.0292 (8)  | 0.0294 (8)  | 0.0019 (7)   | 0.0121 (6)  | 0.0008 (6)   |
| C8  | 0.0318 (9)  | 0.0335 (9)  | 0.0315 (8)  | 0.0020 (7)   | 0.0091 (7)  | -0.0001 (7)  |
| C9  | 0.0475 (10) | 0.0398 (10) | 0.0274 (8)  | 0.0071 (8)   | 0.0129 (7)  | 0.0056 (7)   |
| C10 | 0.0515 (11) | 0.0355 (9)  | 0.0374 (9)  | -0.0013 (8)  | 0.0236 (8)  | 0.0088 (8)   |
| C11 | 0.0382 (9)  | 0.0314 (9)  | 0.0374 (9)  | -0.0046 (7)  | 0.0173 (7)  | 0.0010 (7)   |
| C12 | 0.0301 (8)  | 0.0279 (8)  | 0.0291 (8)  | 0.0011 (7)   | 0.0138 (6)  | 0.0007 (6)   |
| C13 | 0.0605 (14) | 0.0884 (18) | 0.0704 (15) | -0.0219 (13) | 0.0437 (12) | -0.0283 (13) |
| C14 | 0.0299 (9)  | 0.0529 (11) | 0.0365 (9)  | -0.0122 (8)  | 0.0036 (7)  | 0.0126 (8)   |
| C15 | 0.0778 (16) | 0.0467 (12) | 0.0576 (13) | -0.0251 (12) | 0.0148 (12) | -0.0074 (10) |
| C16 | 0.0473 (11) | 0.0508 (11) | 0.0334 (9)  | -0.0185 (9)  | 0.0098 (8)  | -0.0066 (8)  |

### Geometric parameters (Å, °)

| 1.219 (2)   | C6—C7                                                                                                                                                                                                          | 1.491 (2)                                                                                                                                                                                                                                                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.312 (2)   | С7—С8                                                                                                                                                                                                          | 1.391 (2)                                                                                                                                                                                                                                                                                   |
| 0.88 (3)    | C7—C12                                                                                                                                                                                                         | 1.406 (2)                                                                                                                                                                                                                                                                                   |
| 1.3740 (19) | C8—C9                                                                                                                                                                                                          | 1.386 (2)                                                                                                                                                                                                                                                                                   |
| 1.426 (2)   | С8—Н8                                                                                                                                                                                                          | 0.9500                                                                                                                                                                                                                                                                                      |
| 1.456 (2)   | C9—C10                                                                                                                                                                                                         | 1.376 (3)                                                                                                                                                                                                                                                                                   |
| 1.513 (2)   | С9—Н9                                                                                                                                                                                                          | 0.9500                                                                                                                                                                                                                                                                                      |
| 0.9900      | C10—C11                                                                                                                                                                                                        | 1.390 (2)                                                                                                                                                                                                                                                                                   |
| 0.9900      | С10—Н10                                                                                                                                                                                                        | 0.9500                                                                                                                                                                                                                                                                                      |
| 1.519 (3)   | C11—C12                                                                                                                                                                                                        | 1.387 (2)                                                                                                                                                                                                                                                                                   |
| 1.537 (2)   | C11—H11                                                                                                                                                                                                        | 0.9500                                                                                                                                                                                                                                                                                      |
| 1.0000      | С13—Н13А                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
| 1.504 (2)   | С13—Н13В                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
| 1.528 (3)   | С13—Н13С                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
| 1.0000      | C15—H15A                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
| 1.508 (2)   | C15—H15B                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
| 1.525 (3)   | C15—H15C                                                                                                                                                                                                       | 0.9800                                                                                                                                                                                                                                                                                      |
|             | 1.219 (2)<br>1.312 (2)<br>0.88 (3)<br>1.3740 (19)<br>1.426 (2)<br>1.456 (2)<br>1.513 (2)<br>0.9900<br>0.9900<br>1.519 (3)<br>1.537 (2)<br>1.0000<br>1.504 (2)<br>1.528 (3)<br>1.0000<br>1.508 (2)<br>1.525 (3) | 1.219(2) $C6-C7$ $1.312(2)$ $C7-C8$ $0.88(3)$ $C7-C12$ $1.3740(19)$ $C8-C9$ $1.426(2)$ $C9-C10$ $1.456(2)$ $C9-H9$ $0.9900$ $C10-C11$ $0.9900$ $C10-H10$ $1.519(3)$ $C11-C12$ $1.537(2)$ $C13-H13A$ $1.504(2)$ $C13-H13B$ $1.528(3)$ $C15-H15B$ $1.508(2)$ $C15-H15B$ $1.525(3)$ $C15-H15C$ |

| C4—H4                     | 1.0000                   | C16—H16A                       | 0.9800                   |
|---------------------------|--------------------------|--------------------------------|--------------------------|
| C5—C6                     | 1.352 (3)                | C16—H16B                       | 0.9800                   |
| С5—Н5                     | 0.9500                   | C16—H16C                       | 0.9800                   |
| С14—О2—Н2О                | 110.0 (18)               | С9—С8—Н8                       | 119.1                    |
| C12—O3—C16                | 117.10 (12)              | С7—С8—Н8                       | 119.1                    |
| C6—C1—C2                  | 117.26 (16)              | С10—С9—С8                      | 119.56 (15)              |
| C6—C1—H1A                 | 108.0                    | С10—С9—Н9                      | 120.2                    |
| C2—C1—H1A                 | 108.0                    | С8—С9—Н9                       | 120.2                    |
| C6—C1—H1B                 | 108.0                    | C9—C10—C11                     | 120.40 (16)              |
| C2—C1—H1B                 | 108.0                    | C9—C10—H10                     | 119.8                    |
| H1A—C1—H1B                | 107.2                    | C11—C10—H10                    | 119.8                    |
| C1 - C2 - C13             | 110 54 (18)              | C12-C11-C10                    | 119 74 (16)              |
| C1 - C2 - C3              | 108 53 (14)              | C12—C11—H11                    | 120.1                    |
| $C_{13} - C_{2} - C_{3}$  | 113 54 (16)              | C10—C11—H11                    | 120.1                    |
| C1 - C2 - H2              | 108.0                    | 03-012-011                     | 122.89 (15)              |
| $C_{13}$ $C_{2}$ $H_{2}$  | 108.0                    | 03 - 012 - 07                  | 116 24 (13)              |
| $C_{13} = C_{2} = H_{2}$  | 108.0                    | $C_{11} - C_{12} - C_{7}$      | 110.24(15)<br>120.84(15) |
| $C_{14} = C_{2} = C_{12}$ | 111.08 (15)              | $C_{11} = C_{12} = C_{7}$      | 100 5                    |
| $C_{14} = C_{3} = C_{4}$  | 111.98(13)<br>100.42(14) | $C_2 = C_{13} = H_{13}R$       | 109.5                    |
| $C_{14} = C_{2} = C_{2}$  | 109.42(14)               |                                | 109.5                    |
| $C_4 - C_5 - C_2$         | 110.43 (14)              | ПІЗА—СІЗ—ПІЗВ<br>С2. СІЗ. ШІЗС | 109.5                    |
| C14 - C3 - H3             | 108.5                    |                                | 109.5                    |
| C4—C3—H3                  | 108.3                    | H13A-C13-H13C                  | 109.5                    |
| C2—C3—H3                  | 108.3                    | HI3B—CI3—HI3C                  | 109.5                    |
| C5-C4-C15                 | 111.17 (16)              | 01                             | 122.86 (16)              |
| C5—C4—C3                  | 110.10 (15)              | O1—C14—C3                      | 122.40 (16)              |
| C15—C4—C3                 | 112.43 (17)              | O2—C14—C3                      | 114.73 (15)              |
| С5—С4—Н4                  | 107.6                    | C4—C15—H15A                    | 109.5                    |
| C15—C4—H4                 | 107.6                    | C4—C15—H15B                    | 109.5                    |
| C3—C4—H4                  | 107.6                    | H15A—C15—H15B                  | 109.5                    |
| C6—C5—C4                  | 123.77 (17)              | C4—C15—H15C                    | 109.5                    |
| С6—С5—Н5                  | 118.1                    | H15A—C15—H15C                  | 109.5                    |
| С4—С5—Н5                  | 118.1                    | H15B—C15—H15C                  | 109.5                    |
| C5—C6—C1                  | 120.94 (16)              | O3—C16—H16A                    | 109.5                    |
| C5—C6—C7                  | 120.64 (15)              | O3—C16—H16B                    | 109.5                    |
| C1—C6—C7                  | 118.33 (15)              | H16A—C16—H16B                  | 109.5                    |
| C8—C7—C12                 | 117.67 (14)              | O3—C16—H16C                    | 109.5                    |
| C8—C7—C6                  | 119.05 (14)              | H16A—C16—H16C                  | 109.5                    |
| C12—C7—C6                 | 123.25 (14)              | H16B—C16—H16C                  | 109.5                    |
| C9—C8—C7                  | 121.77 (16)              |                                |                          |
| C6—C1—C2—C13              | 164.10 (19)              | C1—C6—C7—C12                   | -53.0 (2)                |
| C6—C1—C2—C3               | 39.0 (2)                 | C12—C7—C8—C9                   | 0.9 (2)                  |
| C1—C2—C3—C14              | 174.85 (16)              | C6—C7—C8—C9                    | -177.28 (15)             |
| C13—C2—C3—C14             | 51.5 (2)                 | C7—C8—C9—C10                   | 0.4 (3)                  |
| C1—C2—C3—C4               | -61.4 (2)                | C8—C9—C10—C11                  | -0.9 (3)                 |
| C13—C2—C3—C4              | 175.22 (18)              | C9—C10—C11—C12                 | 0.0 (3)                  |
| C14—C3—C4—C5              | 172.34 (15)              | C16—O3—C12—C11                 | 5.2 (2)                  |
| C2—C3—C4—C5               | 50.1 (2)                 | C16—O3—C12—C7                  | -172.68 (15)             |
| C14—C3—C4—C15             | -63.1 (2)                | C10—C11—C12—O3                 | -176.46 (16)             |

# supplementary materials

| $C_{2}$ $C_{3}$ $C_{4}$ $C_{15}$ | 174 67 (15) | C10_C11_C12_C7 | 14(2)        |
|----------------------------------|-------------|----------------|--------------|
|                                  | 1/4.07 (13) |                | 1.+ (2)      |
| C15—C4—C5—C6                     | -141.8 (2)  | C8—C7—C12—O3   | 176.16 (14)  |
| C3—C4—C5—C6                      | -16.6 (3)   | C6—C7—C12—O3   | -5.7 (2)     |
| C4—C5—C6—C1                      | -6.3 (3)    | C8—C7—C12—C11  | -1.8 (2)     |
| C4—C5—C6—C7                      | 170.29 (17) | C6—C7—C12—C11  | 176.29 (15)  |
| C2—C1—C6—C5                      | -5.8 (3)    | C4—C3—C14—O1   | -56.8 (3)    |
| C2—C1—C6—C7                      | 177.46 (16) | C2-C3-C14-O1   | 66.0 (3)     |
| С5—С6—С7—С8                      | -51.6 (2)   | C4—C3—C14—O2   | 124.50 (18)  |
| С1—С6—С7—С8                      | 125.06 (18) | C2—C3—C14—O2   | -112.68 (19) |
| C5—C6—C7—C12                     | 130.28 (19) |                |              |
|                                  |             |                |              |
|                                  |             |                |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|----------------------------------------------|-------------|--------------|--------------|---------|
| O2—H2O···O1 <sup>i</sup>                     | 0.88 (3)    | 1.79 (3)     | 2.6640 (18)  | 177 (3) |
| Symmetry codes: (i) $-x+2$ , $-y+1$ , $-z$ . |             |              |              |         |



Fig. 1



